
Fast Median Filter Image Processing Algorithm and
Its FPGA Implementation

Biaobiao Wang, Qiang Xiang*

College of Electrical & Information Engineering, Southwest Minzu University, Chengdu 610041, China
Email: xqiang_0426@163.com

Abstract. Aiming at the difficulty of real-time and high-speed processing of the filtering process
using software methods in image preprocessing, a fast median filtering algorithm based on FPGA is
designed using the parallel processing capability of field programmable gate array (FPGA).
Compared with the traditional median filtering algorithm, it has a great improvement, reducing the
number of data comparisons and improving the processing speed. From the results of the Matlab and
Modelsim joint simulation experiments, it can be seen that the filtering algorithm has a good filtering
effect and can be fast, Efficiently filter the image, which helps to improve the quality of image
processing.

Keywords: field programmable gate array (FPGA), fast median filer, image processing, pipeline.

1 Introduction

In the process of digital image processing, due to factors such as image acquisition tools and methods,
various types of noise will inevitably be generated, resulting in blurred and distorted images, thereby
reducing image quality and affecting subsequent processing effects [1-3]. Therefore, when processing the
image, it is necessary to perform pre-processing such as filtering and enhancement to improve the visual
quality of the image. The amount of data processed by the image pre-processing algorithm is very large,
and it will cost large of time to implement it with general software, so it is more suitable to use the
hardware method to implement it. Field programmable gate array, it is a product of further
development on the basis of programmable devices such as PAL, GAL, CPLD, etc. It is flexible in
programming and easy to modify, and is very suitable for data processing in pipeline mode and parallel
mode. Therefore, it is an ideal choice to use FPGA for image pre-processing.

Median filtering is a non-linear filtering method, which can effectively smooth noise and eliminate
impulse interference, has a better filtering effect on salt and pepper noise, and can retain the edge
information of the image to a large extent. Therefore, it is widely used in many fields such as digital
image smoothing and data analysis and processing [4]. This article uses FPGA to realize the design of a
fast median filter, and finally through Modelsim and Verilog language to carry on the simulation
verification and compare with the software realization result.

2 The Principle of Image Median Filtering

2.1 Traditional Median Filter

Median filtering is a nonlinear signal processing technology based on statistical ranking theory, which
can effectively suppress noise. It was first proposed in the 1970s [5]. The basic principle is to sort the grey
levels of pixels in the field of each legal pixel in an image, and then select the middle value of the group
as the output pixel value. The traditional median filter is defined as follows:

(){ } ()(,) , , ,g x y median f x i y i i j S= − − ∈ (1)

In the above formula, g(x, y), f(x, y) are pixel grey values, and S is the template window. In practical
applications, it is commonly used to select a template window with S of 3×3 or 5×5 to process pixels.
Sometimes in order to simplify the filter window and increase the running speed, you can also use linear
windows, square windows, and cross-shaped windows [6]. The traditional median filter algorithm needs to

88
Frontiers in Signal Processing, Vol. 4, No. 4, October 2020

https://dx.doi.org/10.22606/fsp.2020.44002

FSP Copyright © 2020 Isaac Scientific Publishing

sort all pixels in the template window, and then take the median value to output. The process of sorting
is the process of comparing and exchanging pixels. The number of comparisons between pixels in a
sequence is an important factor affecting the sorting speed. For a filter window of N×N (N takes an odd
number) size, the median value needs to be compared N2×(N2-1)/2 times for each sorting, and the time
complexity is O(N2). Therefore, although the traditional algorithm is simple, it has a large amount of
calculation, a large amount of on-chip resources is consumed for implementation in FPGA, and the
processing speed is slow, so it cannot meet the real-time requirements.

2.2 Fast Median Filter

Although the traditional median filter algorithm reduces the number of comparisons for finding the
median in the filter window, the number of comparisons is still more. In order to find the median with a
lower number of comparisons, this paper adopts a fast median filtering algorithm, which is based on the
statistical sorting theory and makes full use of the essence of the sorting algorithm for sorting, which
can reduce the filter window to find the median more efficiently. For ease of description, each pixel in
the 3×3 filter window is represented as D11, D12, D13, D21, D22, D23, D31, D32, D33, respectively.
Table 1 shows the arrangement of pixels in the window.

Table 1. Arrangement of pixels in the window

 Column1 Column2 Column3
Row1 D11 D12 D13
Row2 D21 D22 D23
Row3 D31 D32 D33

When processing, firstly, sorting the data of each row separately to get the maximum, intermediate

and minimum values of each row. The maximum value obtained in the first line is: Max1=max {D11,
D12, D13}; the middle value is: Med1=med {D11, D12, D13}; the minimum value is: Min1=min {D11,
D12, D13}. Similarly, the three values Max2, Med2, Min2 in the second row and the three values Max3,
Med3, Min3 in the third row can also be obtained. Since among the above nine numbers, the maximum
of the three maximum values must be the maximum of nine pixel values. In the same way, the
minimum of the three minimum values must be the minimum of the nine pixel values. The analysis
shows that the maximum of the three median values is at least greater than the five pixel values, that is,
the minimum value in this row and the median and minimum values in the other two rows. The
minimum of the three median values is at least less than five pixel values, that is, the maximum value
of this row and the median and minimum values of the other two rows. Therefore, the intermediate
value obtained by comparing the minimum value Min_of_max among the three maximum values, the
intermediate value Med_of_med among the three median values, and the maximum value Max_of_min
among the three minimum values is the final filtering result Med_of_nine. The specific process is to
find the minimum of the three maximums: Min_of_max={Max1,Max2,Max3}, the median of the three
medians: Med_of_med=med{Med1,Med2,Med3} and the maximum of the three minimums:
Max_of_min=max{Min1,Min2,Min3}; Finally, compare the three values obtained above to obtain the
final median value: Med_of_nine=med{Min_of_max,Med_of_med,Max_of_min}.

Obviously, compared with the traditional sorting method, the comparison times of this method are
greatly reduced. Because only 21 comparison operations were used to find the median. However, using
the traditional median method to find the median value requires 36 comparison operations. In
comparison, the calculation speed of this algorithm is increased by 42%, so it is very convenient for
parallel processing on FPGA.

3 FPGA Realization of Median Filter Algorithm

The realization process of median filter algorithm on FPGA is mainly divided into three parts: 3×3 filter
window generation module, rank counter module and median filter algorithm design module. The filter
window generation module mainly fetches the digital image pixel data stored in the memory in rows and

Frontiers in Signal Processing, Vol. 4, No. 4, October 2020 89

Copyright © 2020 Isaac Scientific Publishing FSP

generates the 3×3 window required to implement the algorithm. The row and column counter module
are mainly used to calculate the row and column values of the entire image, and it can control when the
filtering algorithm starts and when it ends. The filtering algorithm module mainly performs median
filtering algorithm processing on pixels. The image data is input from datain[7:0], and dataout[7:0] is the
filtered output value. clk is the always signal of the system, rst_n is the reset signal, low level is active,
and col and row are the row and column positions of the currently processed pixels respectively. The
overall design scheme is shown as in Fig. 1.

3×3 Filter
Window

Generation
Module

Fast Median
Filter Module

Row and Column
Counter Module

datain[7:0]

clk

rst_n

dataout[7:0]

col

row

Figure 1. Fast median filter structure

3.1 3×3 Filter Window Generation Module

As shown in Figure 2, the filter window is made up of 9 registers and 2 FIFOs in order to store the rows
and columns of data. Each time the FPGA performs noise detection on the image, 256×2+3 data must
be buffered before the sampling module can start to obtain the image data in the 3×3 window. Each
register stores 1 pixel, and FIFO stores 253 pixels. Through the filter window generation module, image
data can be converted from serial input to parallel 3×3 window output, thereby speeding up image
processing.

R8 R7 R6

R5 R4 R3

R2 R1 R0

FIFO2

FIFO1

datain D33 D32 D31

D23 D22 D21

D13 D12 D11

Figure 2. Filter window generation flowchart

The key to realizing a 3×3 window is when to allow two FIFOs to be read and when to allow window
data to be valid. When the number of bytes in the FIFO reaches 252, the FIFO is allowed to be read.
When 2×256+3=515 clock cycles have passed, the window data is allowed to be valid, and the data
stream will continue to enter in the future, and each image data stream will produce a 3×3 window.

3.2 Row and Column Counter Module

When performing median filtering on a two-dimensional image, as the window slides, when the centre
pixel is at the edge of the image, part of the data read by the 3×3 filter window is not its area, and the

90 Frontiers in Signal Processing, Vol. 4, No. 4, October 2020

FSP Copyright © 2020 Isaac Scientific Publishing

area data output by the filter window is invalid. Usually, the edge of the image does not contain
important information, so the pixels of the edge can be set to zero. The row and column counter module
are mainly used to determine the position of the current centre pixel to control the edge. For an M×N
image, when the row count value row=1 or row=M, and the column count value col=1 or col=N, the
centre pixel of the filter window is located at the edge, and zero is directly output, otherwise the filter
processing is performed.

3.3 Median Filtering Algorithm Design

This article uses a 3×3 filter window, as shown in Figure 3. The first level is to use three 3-input
comparators to complete the sorting. Put the smallest three numbers together, the middle three
numbers together, and the largest three numbers together, to participate in the second comparison. The
second level uses three 3-input comparators to find the minimum of the three maximum values, the
median of the three medians, and the maximum of the three minimums of the output of the first stage.
Use the three output results for the third comparison. The third level uses a three-point comparator to
find the median of the three values output by the second stage, which is the final median. The median
filtering algorithm is completed.

C

C

C

C

C

C

C

D33

D32

D31

D23

D22

D21

D13

D12

D11

Max
Med

Min

Max

Med

Min

Max

Med

Min

Min_of_max

Med_of_med

Max_of_min

Med_of_nine

Figure 3. Median filtering algorithm flowchart

4 FPGA Implementation Results

4.1 Simulation of Median Filter Algorithm

The median filter designed in this paper is implemented using XC7Z010CLG400 in the Zynq-7000 series
of Xilinx. Use Modelsim and Matlab for simulation, first use Matlab to convert an image with a
resolution of 256×256 into a matrix with gray values between 0 and 255[7], and save it in a ".txt" file in
hexadecimal format. Then use the gray value matrix as the input signal of the image data to convert it
into the test vector file of Modelsim [8]. Finally, after testing the vector file with this design, the display
result is shown in Figure 4.

From the figure, we can know that the rst_n signal is valid from the second clock cycle. Since two
rows of image data must be read in to generate a 3×3 window, 515 clock cycles are required. It takes 9
clock cycles to complete a 3×3 window to take the median value, so the first median filter result is
output in the 525th clock cycle. This pipeline operation and parallel calculation method greatly
improves the processing speed of the algorithm, and is very suitable for image pre-processing with high
real-time requirements.

Frontiers in Signal Processing, Vol. 4, No. 4, October 2020 91

Copyright © 2020 Isaac Scientific Publishing FSP

Figure 4. Median filtering algorithm Modelsim simulation diagram

To further verify that the improved median filter used in this paper has higher real-time performance
and lower energy consumption than the traditional median filter. By implementing the two algorithms
on FPGA respectively, and then comparing their resource utilization on FPGA. The comparison results
are shown in Table 2.

Table 2. FPGA resource utilization table

 Combinational functions Logical registers Memory bits
Traditional algorithm 325 170 15312

Fast algorithm 152 78 9521

It can be seen from Table 2 that compared to the traditional median filter algorithm, hardware

implementation of the fast median filter algorithm will take up less hardware resources, thereby saving
valuable chip resources for implementing other processing functions on a single FPGA. In addition, the
fast median filter algorithm can achieve a higher operating frequency on the FPGA, thus meeting the
requirements of real-time image processing.

4.2 Experimental Results and Discussion

 (a) The original image (b) Noisy image

92 Frontiers in Signal Processing, Vol. 4, No. 4, October 2020

FSP Copyright © 2020 Isaac Scientific Publishing

 (c) Median filtered image (d) Improve the results of median filtering

Figure 5. Comparison chart of algorithm processing results

The pre-prepared pictures with added salt and pepper noise are processed by Matlab and the median
filter algorithm implemented in this paper, and the processed results are shown in Figure 5.

Obviously, the traditional median filter algorithm blurs the image to a certain extent, but the
improved median filter algorithm in this paper is closer to the original image and retains more detailed
information. Through experimental comparison, the median filter implemented in this paper is more
effective than the median filter algorithm implemented by Matlab, and the effect of printing and
filtering salt and pepper noise and protecting the edge of the image is better than the results processed
by Matlab.

5 Conclusion and Outlook

This design has successfully implemented a fast median filtering algorithm on the Zynq-7000 series
FPGA of Xilinx Company, which can effectively filter out the salt and pepper noise in the image, and
the real-time performance of the system is well guaranteed. This method provides a solution for the
filtering of the front-end pre-processing of the image processing system, and has high application value
under the premise of high-speed processing speed and high real-time performance. But at the same time,
it was also found that the median filter algorithm caused a certain blur to the edge information in the
image. In the future, based on this design, the algorithm will be improved by setting a threshold to
determine whether the median is a valid pixel.

Acknowledgments. This work was supported by the Southwest Minzu University Graduate
Innovative Research Project (Master Program CX2020SZ96). A special acknowledgement should give to
Southwest Minzu University for its experimental conditions and technical support. In addition, Thanks
to the careful guidance of the teacher and the help of the classmates.

References

1. Hu Xuelong, Xu Kaiyu. Digital Image Processing. Beijing: Electronic Industry Press, 2014.
2. Chang JJ. Modified 2D median filter for impulse noise suppression in a real-time system. IEEE Trans. on

Consumer Electronics, 2005, 41(1):73-80.
3. Wen Qiang, Hou Yongyan. Digital Image Processing. Xi'an: Xidian University Press, 2009.
4. Hu Hongwei. Research on FPGA-based image edge detection system [D]. Harbin Institute of Technology, 2017.
5. Xia Liangzheng. Digital Image Processing [M]. Nanjing: Southeast University Press, 1999:154-160.

Frontiers in Signal Processing, Vol. 4, No. 4, October 2020 93

Copyright © 2020 Isaac Scientific Publishing FSP

6. Wen K L,Burgess N.Listless zerotree coding for color image[C]//Proceedings of the 32nd Asilomar Conference
on Signals,System and Computers,1998:231-235.

7. Gonzalez R C, Woods R E, Eddins S L. Digital Image Processing Using Matlab[M]. Ruan Qiuqi, Trans. Beijing:
Publishing House of Electronics Industry, 2006.

8. Xu, Q.; Varadarajan, S.; Chakrabarti, C.; Karam, L.J.A distributed canney edge detector: Algorithm and FPGA
implementation[J]. IEEE Transactions on Image Processing, 2014, Vol.23, No.7, 2944-2960.

94 Frontiers in Signal Processing, Vol. 4, No. 4, October 2020

FSP Copyright © 2020 Isaac Scientific Publishing

